Spread the love

I love getting great information! Even better when it’s from an expert. And, better yet, when it’s free. This is from the last David Suzuki newsletter and it’s about GMOs. Why do we not learn from our past mistakes of the dangers in technology used wrongly and in messing with Mother Nature without sufficiently considering its consequences?

By David Suzuki with Faisal Moola

In gearing up for the 2010 release of its super-genetically modified corn called “SmartStax”, agricultural-biotechnology giant Monsanto is using an advertising slogan that asks, “Wouldn’t it be better?”.  But can we do better than nature, which has taken millennia to develop the plants we use for food?

We don’t really know. And that in itself is a problem. The corn, developed by Monsanto with Dow AgroSciences, “stacks” eight genetically engineered traits, six that allow it to ward off insects and two to make it resistant to weed-killing chemicals, many of which are also trademarked by Monsanto. It’s the first time a genetically engineered (GE) product has been marketed with more than three traits.

Canada approved the corn without assessing it for human health or environmental risk, claiming that the eight traits have already been cleared in other crop seeds – even though international food-safety guidelines that Canada helped develop state that stacked traits should be subject to a full safety assessment as they can lead to unintended consequences.

One problem is that we don’t know the unintended consequences of genetically engineered or genetically modified (GM) foods. Scientists may share consensus about issues like human-caused global warming, but they don’t have the same level of certainty about the effects of genetically modified organisms on environmental and human health!

A review of the science conducted under the International Assessment of Agricultural Knowledge, Science and Technology for Development in 2008 concluded that “there are a limited number of properly designed and independently peer-reviewed studies on human health” and that this and other observations “create concern about the adequacy of testing methodologies for commercial GM plants.”

Some have argued that we’ve been eating GM foods for years with few observable negative consequences, but as we’ve seen with things like trans fats, if often takes a while for us to recognize the health impacts. With GM foods, concerns have been raised about possible effects on stomach bacteria and resistance to antibiotics, as well as their role in allergic reactions. We also need to understand more about their impact on other plants and animals.

Of course, these aren’t the only issues with GM crops. Allowing agro-chemical companies to create GM seeds with few restrictions means these companies could soon have a monopoly over agricultural production. And by introducing SmartStax, we are giving agro-chemical companies the green light not just to sell and expand the use of their “super crops” but also to sell and expand the use of the pesticides these crops are designed to resist.

A continued reliance on these crops could also reduce the variety of foods available, as well as the nutritive value of the foods themselves.

There’s also a reason nature produces a variety of any kind of plant species. It ensures that if disease or insects attack a plant, other plant varieties will survive and evolve in its place. This is called biodiversity.

Because we aren’t certain about the effects of GMOs, we must consider one of the guiding principles in science, the precautionary principle. Under this principle, if a policy or action could harm human health or the environment, we must not proceed until we know for sure what the impact will be. And it is up to those proposing the action or policy to prove that it is not harmful.

That’s not to say that research into altering the genes in plants that we use for food should be banned or that GM foods might not someday be part of the solution to our food needs. We live in an age when our technologies allow us to “bypass” the many steps taken by nature over millennia to create food crops to now produce “super crops” that are meant to keep up with an ever-changing human-centred environment.

A rapidly growing human population and deteriorating health of our planet because of climate change and a rising number of natural catastrophes, among other threats, are driving the way we target our efforts and funding in plant, agricultural, and food sciences, often resulting in new GM foods.

But we need more thorough scientific study on the impacts of such crops on our environment and our health, through proper peer-reviewing and unbiased processes. We must also demand that our governments become more transparent when it comes to monitoring new GM crops that will eventually find their ways in our bellies through the food chain.